Acetylation and deacetylation--novel factors in muscle wasting.

نویسندگان

  • Nima Alamdari
  • Zaira Aversa
  • Estibaliz Castillero
  • Per-Olof Hasselgren
چکیده

We review recent evidence that acetylation and deacetylation of cellular proteins, including transcription factors and nuclear cofactors, may be involved in the regulation of muscle mass. The level of protein acetylation is balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) and studies suggest that this balance is perturbed in muscle wasting. Hyperacetylation of transcription factors and nuclear cofactors regulating gene transcription in muscle wasting may influence muscle mass. In addition, hyperacetylation may render proteins susceptible to degradation by different mechanisms, including intrinsic ubiquitin ligase activity exerted by HATs and by dissociation of proteins from cellular chaperones. In recent studies, inhibition of p300/HAT expression and activity and stimulation of SIRT1-dependent HDAC activity reduced glucocorticoid-induced catabolic response in skeletal muscle, providing further evidence that hyperacetylation plays a role in muscle wasting. It should be noted, however, that although several studies advocate a role of hyperacetylation in muscle wasting, apparently contradictory results have also been reported. For example, muscle atrophy caused by denervation or immobilization may be associated with reduced, rather than increased, protein acetylation. In addition, whereas hyperacetylation results in increased degradation of certain proteins, other proteins may be stabilized by increased acetylation. Thus, the role of acetylation and deacetylation in the regulation of muscle mass may be both condition- and protein-specific. The influence of HATs and HDACs on the regulation of muscle mass, as well as methods to modulate protein acetylation, is an important area for continued research aimed at preventing and treating muscle wasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-Dependent Transcriptional Regulation Control of Cardiac Growth by Histone Acetylation/Deacetylation Excitation-Transcription Coupling in Vascular Smooth Muscle

Histones control gene expression by modulating the structure of chromatin and the accessibility of regulatory DNA sequences to transcriptional activators and repressors. Posttranslational modifications of histones have been proposed to establish a “code” that determines patterns of cellular gene expression. Acetylation of histones by histone acetyltransferases stimulates gene expression by rela...

متن کامل

SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription.

UCP3 (uncoupling protein-3) is a mitochondrial membrane transporter expressed preferentially in skeletal muscle. UCP3 lowers mitochondrial membrane potential and protects muscle cells against an overload of fatty acids, and it probably reduces excessive production of reactive oxygen species. Accordingly, ucp3 gene transcription is highly sensitive to fatty acid-dependent stimulation and also to...

متن کامل

An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae.

Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. Here we report the identification of a novel reversible sterol modification in yeast, the sterol acetylation/deacetylation cycle. Sterol acetylation requires the acetyltransferase ATF2, whereas deacetylation requires SAY1, a membrane-anchored deacetylase with a putative active site...

متن کامل

Histone deacetylase 6 regulates cytokinesis and erythrocyte enucleation through deacetylation of formin protein mDia2

The formin protein mDia2 plays a critical role in a number of cellular processes through its ability to promote nucleation and elongation of actin filaments. In erythroblasts, this includes control of cytokinesis and enucleation by regulating contractile actin ring formation. Here we report a novel mechanism of how mDia2 is regulated: through acetylation and deacetylation at lysine 970 in the f...

متن کامل

Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation.

Dermo-1 is a multifunctional basic helix-loop-helix (bHLH) transcription factor that has been shown to be a potent negative regulator for gene transcription and apoptosis. To understand the molecular mechanisms that mediate the function of Dermo-1, we generated a series of Dermo-1 mutants and used a MyoD-mediated transcriptional activation model to characterize the roles of its N-terminal, bHLH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metabolism: clinical and experimental

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2013